© Michael Fenton 2008 - 2025

Connecting the PICAXE 08M and PICAXE 18X

to the Casio 9750G Plus graphics calculator

Introduction to Casio BASIC

POVER GRAPMIC

000000
cCoee
L0006V
BOGwO®

Compiled from various web sources, 2006 - 2007
© Michael Fenton 2008 - 2025

NOTE: Update version due December 2025

10of 20

© Michael Fenton 2008 - 2025

Casio BASIC

PART 1: Creating a Program

To create a new program press W then locate the program icon, press ,

press UF3 to create a new program. You will then be asked to enter a name for
your program, also you may create a password at this time (WARNING: if you put a
password on your program you will not be able to use the debugger).

PART 2: Variable Basics
A variable is something which holds a value. The most commonly used are the

letters A~Z and r,_. There are others, but they are not covered in this section. To

store a value into a variable you must use the = key, like this:

CODE
1->A // Assigns 1 to A

It should look like this:

CODE
1->A~D // Assigns 1 to ABC & D

Variables are the most important aspect of programming.

PART 3: Basic Loops

Loops are used to repeat blocks of code. There are several types of loops in Casio
BASIC: Goto/Lbl, Do/lpWhle, For/Next, and While/WhileEnd. Here is an example of
a Goto/Lbl loop:

CODE

1->A //Assigns 1 to A

bl 1

A+1->A //Adds 1 to the variable A and stores new value

Goto 1 //Returns to Lbl 1

This loop will execute infinitely, Adding 1 to A each time (actually it will stop when
the value of A is greater than 99*10799 because you will get a mem error).

Here is an example of a For loop; note that it does not take as many lines:

CODE

For 1->A to 100 Step 1

//this loop assigns 1 to A then adds 1 to A until it equals 100

Next //Goes back to the start of the loop, adds the step to the

variable.

2 0f 20

© Michael Fenton 2008 - 2025

Anything between the For and next statement will be executed until the expression
evaluates true (A equals 100). By changing the value of Step you can change how

much A is incremented by.

The While loop checks to see if the expression is true then executes the code. After
the code has been executed it returns to the top, checks the expression, and if it is
false jumps out of the loop and continues with executing the program. This is an
example of a While loop.

CODE

1->A

While 1=1 //1 always equals 1 so the expression always evaluates to
True

A+1->A

WhileEnd

Since the while loop evaluates the expression before executing the code it is
possible that if the expression is false before loop begins (ex: 1=2) then the loop

will never occur, it will just skip right over the code and continue with the program.

Unlike a while loop a Do/LpWhle loop will always execute at least once since it
evaluates the expression after the code has been executed. A Do/LpWhle loop looks
like this.

CODE

1->A

Do //Start of the Do/LpWhle loop

A+1->A

LpWhle A<100 //Loops while A is less than 100

PART 4: Selection Statements

Selection Statements are used to make programs have differing outcomes, instead
to executing the same way every time they are run. A selection statement checks
an expression, sees if it is True or False, then if True executes the rest of the
statement otherwise it skips to below the statement and continues with execution.
There are two types of selection statements on the calculator. They are the If/Else

statement and the => arrow.

30f20

© Michael Fenton 2008 - 2025

An If/Else statement works like this

CODE

1->A

If A=1 //expression to be evaluated

Then “HI” //result if expression is true
“HOW ARE YOU”

Else “BYE” //result if expression is false
“SEE YOU LATER”

If End //end of statement

Result:

Since A is 1 the statement evaluates to true, therefore

QUOTE (Program Output)
HI

HOW ARE YOU

is printed. If you replaced the first line with 0->A then the if statement would

evaluate to False, and

QUOTE (Program output)
BYE

SEE YOU LATER

would be printed.

An If statement can contain many different things, and can be many lines long,
they are the keystone to making a game, and before going on you should feel
comfortable using them.

The => arrow is also very useful, it is a single line selection statement that takes

up less space but can do less than a normal if/else.

This is the same code as above, except using the => arrow instead of the If
statement.

CODE

1->A

A=1=>"HI”

A=1=>“HOW ARE YOU”

4 of 20

© Michael Fenton 2008 - 2025

A<>1=>"BYE” // <> means not equal to

A<>1=>"SEE YOU LATER”

In general, the best time to use a if statement is when you have at least two lines
of code to be put inside, otherwise use the => arrow.

PART 5: Advanced Loops

Nesting is when you take one loop and put it inside another. Here is an example:
CODE

0->C

For 1->A To 10 //Step can be omitted instead of using Step 1

For 1->B To 10

A+B+C->C

Next

Next

Cd // the 4 represents the output sign, it displays whatever is

before it and Pauses until [EXE] is pressed.

By executing this code you will get this output:

QUOTE (Program Output)

1100 //caused by 4

Now we will go through the code and look at what each line does.

Line 1: 0->C

Assigns the value 0 to the variable C

Line 2: For 1->A To 10

Tells the program that you will be looping until A is equal to 10, adding 1 with each
loop.

Line 3: For 1->B To 10

Tells the program that you will be looping until B is equal to 10, adding 1 with each
loop.

Line 4: A+B+C->C

The current value in A will be added to the current value of B, that value is then
added to the current value of C and then assigned to C.

Line 5: Next

Goes to line 3.

Line 6: Next

Goes to line 2.

50f 20

© Michael Fenton 2008 - 2025

Line 7: Ca

Displays the final value of C.

As you can see, the second loop executes completely for each iteration (loop) of the

first loop.

Nesting also applies to selection statements, you can nest if or => inside each
other as needed.

Example:

CODE

A<1=>A>0=>"HI"

If A<1

Then if A>0

Then “HI”

End If

End If

Part 6: Logical Operators

As you have just seen, there are times when you will want more than one condition
in a selection or loop, you can nest the statements or you can use a logical
operator: AND OR, NOT.

AND and OR are operators which can be used in selection statements to specify

additional conditions, therefore the code above could be written:

CODE
A<l and A>0=>"HI”

Instead of:

CODE
A<1=>A>0=>"HI"

The OR operator allows you to specify alternate conditions which are evaluated
independently and if any are true then the entire statement is considered true. This
means you can do this:

CODE

If A=1 Or B=1

Then “TRUE”

End If

6 of 20

© Michael Fenton 2008 - 2025

When this executes it will print TRUE if A or B equals 1.

The NOT operator can also be used in selection statements, though it is not used
nearly as often. NOT returns False if the statement is true (or 1) and True if the
statement is False (or 0) so:

CODE

If Not (A=1)

Then “TRUE”

End If

This will print true if A is any number but 1. In this case the Not statement is used
as an <> (not equal to) statement, but it has other uses. We will cover more on
this later.

Part 7: Input Basics

You might want to get information from the user. The simplest way to get input
from the user is to use the ? command.

Syntax: ?->(Variable)
Description: this command causes a ? to appear on the screen, execution pauses

until the user enters data and hits e , then the data is put into the variable. This
is a good way to ask yes or no questions, with the user having to enter 1 for yes
and 0 for no.

Another way you can use the ? command is to put a prompt before it: “"Continue

(1=YES 0=NO)"?->C
This causes the text to be displayed with a ? after it and waits for data.

Part 8: Key Input

Sometimes you will want to know what key the user is pressing, to do this you
must use the Getkey command.

Syntax: Getkey->(variable) or if Getkey=(key number)

Description: Getkey returns a different value for each key pressed, if no key is
pressed then it returns 0, here is a simple program used to display the value of a
key.

CODE

bl 1

Locate 1,1,Getkey

Goto 1

The only key which does not return a value is AC/On.

7 0f 20

© Michael Fenton 2008 - 2025

Part 9: Advanced Loops
A simple loop:

CODE

While A<>B

WhileEnd

A nested loop:

CODE

While A<>B

Do

LpWhile A=B

WhileEnd

A nested loop is just a loop inside of a loop, just like a nested if. what most people
have trouble with is the execution of nested loops, if you have programming
experience then you will all ready know this but if your new to field take a look at
the sample below:

CODE

Ibl 1

1->A

1->B

1->C //counter var

1->D //counter var

Do

A+B->A

While D<=5 //loops 5 times

B+A->B

Isz D

WhileEnd

1->D

Isz C

LpWhile C<3 //loops 3 times

A+Bd

Go through this program and see if you can figure out what the output will be, then
look below for the answer.
if you did not get 610 as the output then you made a common mistake. You do not

understand one of the basics of nested loops:

8 of 20

© Michael Fenton 2008 - 2025

QUOTE
PRIMARY RULE: an inner loop executes fully for each interation (loop) of an outer loop

The break statement: Break terminates execution of a loop and resumes normal

program flow at the end of that loop.

CODE

While A=A //endless loop

Isz A

Break

"THIS ISN'T SHOWN, IT ISN'T EVEN LOOKED AT BY THE PROGRAM"
"NEITHER IS THIS"

WhileEnd

"ESCAPE FROM THE LOOP" //Break goes to here

now we will look at how Break works in nested loops

CODE

While A<>B

Do

Break

LpWhile A=A

//Break goes to here

WhileEnd //loops like normal

As you can see, Break only exits the current loop, and when that loop comes
around again and if Break isn't executed (if it's in an If statement) then the loop
does not terminate and continues like normal. Get it?

CASIO Basic examples
Example 1:

ILbl 1

“First number”? -> A
If Int (A) # A

Then Goto 1

IfEnd

“Second number”? -> B
AxB.J

Goto 1

90f 20

© Michael Fenton 2008 - 2025

How It Works

We have told the program to take the integer of A and test it against the actual value
of A. If these two don't equal, then obviously A is not an integer. The next part of the
statement is the Then command, since we said, 'if they don’t equal, then go to label
1’. If A is an integer, the program will ignore the Then statement.

The 4 symbol is in the PRGM (SHIFT VARS) menu and it means ‘stop the program
and display this result’

Example 2:
Storing data in a list

The usefulness of the results in the simulation is limited because the outcomes are
not stored anywhere, since the variable S is always changing during each loop. This
is why it is a good idea to store data in lists (sometimes called arrays), where it can
then be analysed later. This is the purpose of this lesson.

In order to store the data in a list, we must first set the dimensions of the list.

This means telling the calculator how many elements there are to be stored.

Since we are using the variable C as the number of simulations, this will be used as
the dimensions of list 1.

Lets set C equal to 5....
cC ->5
Then add the line C -> Dim List 1

The commands Dim and List are found in the LIST menu, which is in the OPTN
menu. Press OPTN, followed by LIST (F1). Just about any action that relates to lists
will be found in this menu.

o i o o CE ======
1Tl =TT "AxE I5va
;QEEC IS"d H=B=C.,
"SIHULHTIUH RESLILTS"a FE r]':"MIiII'; gT%D“ goo-1se

0
For 1+2 To Ce

{ERar# 1M Int. CEFan#)+12+a

i R an# »+1-+MHd ['-I-ﬁi-—i-&ﬁaﬁ-ﬂ-?-l-l—iﬂel—m = _]

p L

A Bit of Extra Help
Enter RUN mode from the Main Menu. Enter this line and press EXE.
C -> Dim List 1
This line says that I want to have 5 '‘empty’ elements in List 1 (they are in fact filled
with the value of 0).
Press MENU and then enter STAT mode. You will see that there are 5 '‘empty’
elements in List 1.

Lizt IJList 2JList [List o]

You will notice that this command has created 5 ‘empty’ elements in list 1. As a rule,
whenever you want data to be stored in a list (during the execution of a program),
you must first create empty elements using the command described above. This is,
if you tried to enter data in position 6, you would receive an error message.

10 of 20

© Michael Fenton 2008 - 2025

CODE

For 1 -> 2 to C
Int (6Ran#)+l -> M
Int (6Ran#)+l1 -> N
M+ N -> SJ4

S -> List 1[Z]
Next

How It Works

When the program first comes to the For statement, it will set Z to 1 and go through
and execute everything on the way to the Next command. This means it will get to
S -> List 1[Z]

and send the value of S (which has been set as M+N) to List 1, row Z, which at the
moment is 1. After this, the program will move on to the next line, which is the
Next command in this case.

Once it gets to the Next command, the program will go back to the For command
and do it again, except Z will now be set to 2. So then the new value of S will be
sent to List 1, row Z, which is now 2. This will continue over and over again until
Z=C.

Notice how having the 8 -> List 1[Z]
command within the For statement utilises the way Z increases by 1 each time.

The maximum number of elements that this particular calculator can
handle in 255,

11 of 20

© Michael Fenton 2008 - 2025

PICAXE circuits

1. Electrical communications:

TTL-level (High=5V and Low=0V), asynchronous serial half-duplex communication,
connects to a PC’"s RS-232 COM-port with a MAX232 or equivalent level-converter
circuit.

Baud-rate: 9600 bps

Parity: none

Byte-size: 8 bits

Stop-bits: FROM Casio: 2 bits TO Casio: 1 bit

The Casio-plug is a standard 2.5mm stereo jack with the following pin-
designations:

e Sleeve Ground

e Ring Data to Casio

e Tip Data from Casio

2. Casio to Casio cross-over cable

2.5 mm stereo plug 2.5 mm stereo plug

3. Casio to PC RS232 interface

D1
14148 2.5 mm stereo plug from

DTR
5 Casio connected to a PC D9

B 45 female plug.

R1 O Rx :
Tx 10k T Signal | 9p [25p)
BC337 ;ﬂﬁ ; 239 BC547C can substitute for
L o e el BC337 NPN transistors.
T2 10k GND |5 |7
BC337 —{ 1—OTx
GND D2 o GND

14148 PS5 1993

LED’s in series with Rx and TX can indicate communication to and from PC

Circuit by Michael Fenton

12 of 20

4. Casio to Picaxe

© Michael Fenton 2008 - 2025

Place small signal diode 1N4148 (bar toward Picaxe) in series with output TO Casio
inside the 3.5mm stereo plug.

Cable by Michael Fenton

PICAXE-18X

ADC 2/ Input 2 O
Sarial Dut O

Serial In O

Reasat O

v O

Outputa O
Cutput 1/ i2c sda O
Output 2 O

Output 3/ pwm 3 5

L 18 input 1/ADC 1
[Input O/ ADC O f Infrain

[Input 7/ kayboard dala

1 +y

O Cutput 7

O Cutput & =
O Output &

1
2
3
4
1 14
a
7
a
a H Oulput 4 {i2e s

1
I
g= 1.1
|

]

eoecece

c0ce G
TH Rx
scsesco
®oo~
o000
e
o0 D

258 mm steren

O Inpul &/ keyboard clock

arial
out

-

o
Fl

u Lt ! !

Y serial in 1
serial serial OV
out in

o

zerial
out|:

Il
4 1 E

zerial
in

o

zerial out

THS143

! 11
o

Lk

serial |

out av

ki
— 1 pap
S ki !

selrial in

1
K

A
+

H

=
I zerial in

q

out

{c) Michael Fenton 2008

000G
eleale

J

321

2 3

zerial serial OW

in

2.5 mm stereo

13 0f 20

© Michael Fenton 2008 - 2025

6. Casio 9750G Plus Code: RECEIVE picaxe data into a List:

255 ->
255 ->
1 ->B
1bl 1

"Get r

Dim List 1
Dim List 2

eadings (1 = YES)"? -> A

A= 1 => Goto 2

Goto 1
Lbl 2

Receiv
// R x
Getkey

e (R)
0.123 -> A convert to degree celcius or whatever units
-> C

If C #1 47

Then G
IfEnd
If B <
Then B
A ->L

oto 3

256
-1 -> Listl[B]
ist2[B]

B+l -> B

IfEnd
Lbl 3
ClrTex
Locate
Locate
If B =
Then L
IfEnd

Goto 2

t
1,1, B-1
6,1, A
256
ocate 1,2, “LIST FULL!”

How It Works

List 1 and List 2 is created with 255 spaces (rows) assigned to them

Once the user inputs “1” the Casio displays data values from the PICAXE but
only puts them into LIST 2 (y axis) if the EXIT button is pressed. List 1 is for
plotting the x axis 0 — 255 time intervals.

From the MENU select STATs (2 on main menu)
press F1 (GRPH) then F6 (SET) to set up the graphing options.

Go down to graph type and press F6 to get to other graph types then choose
box (for a box and whisker).

Press EXIT back to the list (you should be able to see your data in the list),
press F1 to get a box and whisker graph, good for working out mean, upper
quartile and range.

The data collected can be transformed to temperature, etc by adding line in
blue above (remove // remark symbol)

Students can try to fit a x? or other curve and explain

14 of 20

© Michael Fenton 2008 - 2025

7. Casio 9750G Plus Code: SEND keystrokes to picaxe ypod to control CASI

1bl 1

Getkey -> A

Ifa >0

Then Int((A-26); 2.5 +0.2) -> A // ; means divided by
Send (A)

IfEnd

Goto 1

How It Works
o CASI has an 08M slave that listens for Casio keystrokes
o CASI 08M interrupts a 14M master with the keystroke

e CASI turns on a L293D motor controller chip to move CASI in the
appropriate direction

« SRFO05 sonar range finder prevents obstacle collisions

15 of 20

8. Casio 9750G packet encoding:

© Michael Fenton 2008 - 2025

Modified from article by Erik Grindheim, August ~ October 2001

There are four different types of data packets in use to transfer variables, in
addition to the single-byte packets. This section describes the structure of these

packets in detail:

Request packet:

Byte no (1-50) ASCII HEX ($)
1-4 :REQ S3A $52 $45 s$51
5 $00
6-"7 VM (Variable) $56 $4D <-- This 1is the bytes we want...
PC (Picture) $50 $43 (Byte no 12-49 below is based)
LT (List) $4C $54 (on Variable transfers, VM.)
MT (Matrix) $4D $54 ()
8-11 all SFF
12 A-Z / r / é (The name of the Variable:)
$41 - $5A / CD / SSCE
13-49 all SFF
50 Checksum
= $01 + not((sum bytes 1-49)- $3A)

Variable description packet:

Byte no (1-50) ASCII HEX ($)

1-4 : VAL $S3A $56 $41 s4cC

5 $00

6-7 VM $56 $4D

8 $00

9 if the variable is reset/unused: $00 **
if variable is in use (normal): $01

10 $00

11 the same value as byte no 9: $00 or $01

12 A-Z / ¥ / e

13-19 all SFF

20-27 Variable $56 S$61 $72 $69 $61 $62 $6C $65

28 C or R $43 or $52
(If the variable has an imaginary
part: C-complex. Otherwise: R-real)

29 S0A

30-49 all SFF

50 Checksum
= $01 + not((sum bytes 1-49)- $3A)
**note: If bytes 9 and 11 has the HEX-
value 00 this
means that the variable has not been
used
after last "Alpha Memory" reset. Then no
Value packet will be transmitted at all.
After this packet comes the End packet.

16 of 20

© Michael Fenton 2008 - 2025

Variable packet, Real numbers:

Byte no (1- ASCII HEX ($)
50)

1 : $3A

2-5 $00 $01 $00 s01

6 $00-309 (BCD 0 and BCD 0-9 (integer
part))

7-13 $00-$99 (BCD for 14 digits (decimal
part))

14 SignInfoByte. Bit set if...:
bit 7 - Variable has an imaginary part
bit 6 & 4 - Value (real part) is
negative
bit 0 - Absolute value of (real part
of) value is 1,0... or more
bits 1, 2, 3 and 5 are always 0 / Low

15 Exponent, 00-99
Exp.: Byte:
+99 99 \
+01 01 -} byte 14 bit 0 = 1 (High) **
00 00 /
-01 99 \
-02 98 -} byte 14 bit 0 = 0 (Low)
-99 01 /

16 Checksum
= $01 + not((sum bytes 1-15)- $3A)
**note: If the variable is (exactly) 0,0
then the exponent is 00 (instead of
minus
infinite) but this bit (bit 0 in byte
14) is still low because variable value
is less than 1.

The smallest value the Casio accepts is £ 1.00000000000000 x 10 °°
The greatest number the Casio accepts is £ 9.99999999999999 x 10 +°°
Zero is stored as + 0.00000000000000 x 10 *9

Or, at a general form: *+ I.decimals x 10 *EE

In the Value packet, byte no. 6 is containing the integer part I, always from $01 to
$09 (except if the variable value is exactly 0,0...).

Bytes no. 7 to 13 contain the 14 decimals represented as BCD data.

The exponent EE is represented in byte no. 15 and bit 0 of the SignInfoByte (byte
no. 14).

The sign indicating whether the value is negative or positive is held in bits 6 and 4
of the SignInfoByte.

17 of 20

© Michael Fenton 2008 - 2025

Variable packet, Complex numbers:

Byte no (1- ASCII HEX ($)
50)

1-15 Equal to bytes 1-15 in the 16 bytes
long Value packet for real numbers.
These
bytes only describe the real part of the
variable, while the next 10 bytes
describe
the imaginary part of the complex
number :

16 $00-$09 (BCD 0 and BCD 0-9 (integer
part))

17-23 $00-$99 (BCD for 14 digits (decimal
part))

24 SignInfoByte. Bit set if...:
bit 7 - Always set to 1 (imaginary)
bit 6&4 - Value (img. part) is negative
bit 0 - Absolute value of (img. part
of) wvalue is 1,0... or more
bits 1, 2, 3 and 5 are always 0 / Low

25 Exponent for the imaginary part; 00-99
Exp.: Byte:
+99 99 \
+01 01 -} byte 24 bit 0 = 1 (High)
00 00 /
-01 99 \
-02 98 -} byte 24 bit 0 = 0 (Low)
-99 01 /

26 Checksum
= $01 + not((sum bytes 1-25)- $3A)

End packet (aways the same!):

Byte no (1- ASCII HEX ($)
50)
1-4 :END $3A $45 $4E $44
5-49 all SFF
50 $56 (checksum, always the same value
for all End packets no matter what other
packets have been sent)

Checksum calculation:

As an example let’'s show how the checksum of the End packet is calculated.

This value will always remain the same since nothing in this packet changes from

time to time.

First we add all the previous 49 bytes. This gives us a sum of $E4 (the excess carry
digits are thrown away).

Then we subtract $3A and the result is $AA. We invert it (=$55) and add $01. The
result is $56, which is the checksum-byte; byte no. 50.

18 of 20

© Michael Fenton 2008 - 2025

9. Casio 9750G RECEIVE() sequence / protocol

¢ When the command is issued the Casio sends an “attention request” byte,
$15

e The external device must reply with a “device present” byte, $13 within 0.5
~ 1 second or a Com ERROR message is displayed

e The Casio sends a Request packet which consist of 50 bytes.
e The external device receives this and confirms with one byte, $06.
e The Casio confirms that it's ready for a Variable-description packet with $06

e The external device sends a Variable-description packet consisting of 50
bytes. Byte 12 in this packet (variable nhame) seems to be totally ignored by
the Casio, as the variable is stored under the name indicated in the Request
packet anyway. Still it’'s recommended to send back the same name/byte as
received in the Request packet byte 12.

e The Casio confirms that it's ready (for a Value packet or an End packet,
depending on byte 9 and 11 in the previous packet) with $06

e A Value packet is then sent from the external device. It is still consisting of
either 16 or 26 bytes, depending on whether the variable also contains an
imaginary part (complex number) or not. If the variable is empty this packet
is not sent at all (length: 0 bytes). This means that the actual “Alpha
Memory” variable in the Casio is deleted. This will free 10 (real) or 20
(complex) bytes of memory in the Casio. In calculations the deleted
variable’s value equals zero (0).

e If a Value packet was sent then the Casio confirms (as usual) with $06 (if
the variable is empty there is no Value packet, and this byte is not sent
either.)

e To close the communication cycle the external device sends an End packet
of 50 bytes. The end packet is always the same; none of the bytes change

their value.

Casio PICAXE
$15 R EE
Request <+ S06
packet I
$06 « Variable

g description packet
506 <4 Value
g packet
506 <4 End
g packet
<4+

19 of 20

© Michael Fenton 2008 - 2025

10. Casio 9750G SEND() sequence / protocol

e When the command is issued the Casio sends an “attention request” byte,
$15

e The external device must reply with a “device present” byte, $13 within 0.5
~ 1 second or a Com ERROR message is displayed

e The Casio starts to send the Variable-description packet, which consists of
50 bytes.

e The external device receives this and confirms with $06.

e The Casio sends its Value packet, consisting of either 16 or 26 bytes. Packet
length depends on whether the variable also contains an imaginary part
(complex number) or not. If the variable has never been assigned a value
since the last reset of “Alpha Memory” this packet will not be sent at all.

e The external device receives this packet and confirms with $06. (If an empty
variable is sent, then there is no Value packet, and this byte is not sent
either.)

e To close the communication cycle the Casio sends an End packet of 50
bytes. The end packet is always the same; none of the bytes change their

value.
Casio PICAXE

$15 | 813
Variable o $06
description packet > |l

Value 4+ 506

packet >

e
End ;
packet >

20 of 20

